Journal of Organometallic Chemistry, 267 (1984) 309-312 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PREPARATION OF η^5 -C₅H₅COOH(CO)₂Fe- η^1 -R CARBOXYLIC ACIDS

T.Yu. ORLOVA, V.N. SETKINA* and D.N. KURSANOV

A.N. Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences, 28 Vavilova Str., Moscow (U.S.S.R.)

(Received January 6th, 1984)

Summary

 η^5 -C₅H₄(COOH)(CO)₂FeR (R = Ph, C₅H₄Mn(CO)₃ or CH₂Ph) carboxylic acids were obtained in high yields via metallation with BuLi followed by treatment with CO₂.

In our earlier studies of the reactivity of cyclopentadienylcarbonyliron complexes with σ -bonded ligands by the isotopic hydrogen exchange (IHE) technique, we discovered that in η^5 -C₅H₄(CO)₂Fe- η^1 -Ph (I) the H atoms of the cyclopentadienyl ligand undergo exchange under conditions favouring protophilic substitution (EtOD, EtONa) [1].

Continuing the investigation, we found that in complexes of similar structure, η^{5} -C₅H₅(CO)₂Fe- η^{1} -C₅H₄Mn(CO)₃ (II) and η^{5} -C₅H₅(CO)₂Fe- η^{1} -CH₂Ph (III), under the same conditions only those H atoms which were π -bonded to iron were exchangable. Apparently, the lack of hydrogen exchange in C₅H₄Mn(CO)₃ (complex II) is due to the passivating effect of the strong electron donor C₅H₅(CO)₂Fe on protophilic hydrogen exchange.

Kinetic measurements have enabled us to evaluate the C-H acidity of the cyclopentadienyl ligands as a function of the nature of the σ -bonded ligand R. The IHE rate constants in a mixture of 10% EtONa, EtOD and benzene at 100°C are 1.0×10^{-5} , 2.1×10^{-6} and 4.0×10^{-7} s⁻¹ for complexes I, II and III, respectively. The relative rate constants are 25/5/1.

From the above data it follows that the C-H acidity of the cyclopentadienyl ligands in I-III is rather high: it is close to that of the methyl hydrogen atom in Ph₃CH ($pK_a = 29$) for I (R = Ph) and to the C-H acidity of the methyl hydrogen atoms in Ph₂CH₂ ($pK_a = 30$) for II (R = C₅H₄Mn(CO)₃) and for III (R = CH₂Ph) [2].

On the basis of the results of the investigation, we carried out metallation of complexes I and II at the cyclopentadienyl ring and demonstrated the possibility of using this reaction for the synthesis of complexes substituted in the Cp-ring of $XC_5H_4(CO)_2FeR$ [3].

TABLE 1							
ELEMENTAL AN	ALYSIS, IR AND ¹ H	I NMR SPECTRA	VL DATA AND	OTHER CHAR	ACTERISTICS OF η^5 -C	C ₅ H ₄ COOH(CO) ₂ Fe-η ¹ -R	
R	M.p. (°C)	Analyses (Fc	ound (calcd.) (%	(()	IR 200	¹ H NMR	Yield
		c	Н	Fe	rcu14; r(CO) cm ⁻¹)	((LU ₃) ₂ CU rel. to 1MS, ø ppm)	(%)
Ph	112-113	56.23	3.17	18.26	µ(C=0) 1695	5.24(t,2H,Cp)	63
		(56.38)	(3.35)	(18.76)	»(C≡O) 1985	5.55(t,2H,Cp)	
					2033	6.81-7.00(m,3H,Ph)	
						7.36-7.45(m,2H,Ph)	
C ₅ H ₄ Mn(CO) ₃	146.5-147.5	45.22	2.34	13.10	»(C=0) 1695	4.65-4.66(t,2H,CpFe)	53
		(45.28)	(2.17)	(13.20)	r(C≡O) 1932	4.89-4.91(t,2H,CpFe)	
					2000	5.32-5.34(t,2H,Cp)	
					2011	5.63-5.65(t,2H,Cp)	
					2035		
					2049		
CH ₂ Ph	122-123	57.70	3.89	18.33	»(C=0) 1693	2.90(s,2H,CH ₂)	67
I		(57.69)	(3.85)	(17.94)	v(C≡0) 1972	5.10(t,2H,Cp)	
					2021	5.44(t,2H,Cp)	
						5.86-7.21(m.5H.Ph)	

R	p <i>K</i> "	$K_{\rm a} \times 10^{-6}$	
Ph	5.07	8.5	
$C_5H_4Mn(CO)_3$	5.09	8.1	
CH ₂ Ph	5.29	5.1	

TABLE 2 pK_a AND K_a VALUES FOR η^5 -C₅H₄COOH(CO)₂Fe- η^1 -R

In the present work, novel carboxylic acids, η^5 -C₅H₄COOH(CO)₂Fe- η^1 -R (IV, R = Ph; V, R = C₅H₄Mn(CO)₃ and VI, R = CH₂Ph), have been obtained in high yields by metallation of I-III followed by treatment with CO₂:

The fact that a carboxylic group is attached to the ligand π -bonded to the iron atom has been shown by the ¹H NMR spectra of IV-VI. The resulting acids IV-VI are yellow powders with the characteristics (m.p., elemental analysis, IR and ¹H NMR spectral data, etc.) presented in Table 1.

By potentiometric titration we estimated the strength of carboxylic acids IV-VI. The pK_a and K_a values for these acids in 50 vol.% aqueous ethanol are given in Table 2.

Under the same conditions, the pK_a of benzoic acid is 5.70 [4] and that of ferrocenecarboxylic acid 6.09 [4].

Thus the carboxylic acids obtained in this work proved to be 2-4 times stronger than benzoic acid and 6-10 times stronger than ferrocenecarboxylic acid.

Experimental

The complexes η^5 -C₅H₅(CO)₂Fe- η^1 Ph (I), η^5 -C₅H₄(CO)₂Fe- η^1 -C₅H₄Mn(CO)₃ (II) and η^5 -C₅H₅(CO)₂Fe- η^1 -CH₂Ph (III) were prepared as described earlier [5-7].

Hydrogen exchange in I-III was effected in sealed tubes in argon at 100°C. The molar ratio of the reactants was: complex/EtOD/EtONa/C₆H₆ = 1/80/8/45.

The results of the kinetic measurement are given in Table 3.

The content of D was determined by a drop technique according to the excessive density of combustion water or by a mass spectral technique.

The absence of hydrogen exchange in $C_5H_4Mn(CO)_3$ of complex II was demonstrated by cleaving the deuterated complex II with iodine at the Fe-C σ -bond and analysing the concentration of D in the resulting $C_5H_5(CO)_2$ FeI.

Complex	Time	% of equi-	$k \times 10^{6}$	$k_{\rm aver} \times 10^6$	k rel
	(\$)	librium	(s ⁻¹)	(s ⁻¹)	
I	4620	5.5	12		
	5700	5.0	9	10.5	25
	9000	15	7		
	11880	13	12		
II	8100	1.8	2.2		
	14 520	3.7	2.6	2.1	5
	25 500	4	1.5		
III	8760	0.3	0.4		
	27060	1.5	0.4	0.4	1
	32 460	1.3	0.4		

ISOTOPIC HYDROGEN EXCHANGE IN COMPLEXES I-III

Preparation of η^5 -C₅H₄COOH(CO), FeR (R = Ph, C₅H₄Mn(CO), and CH₂Ph).

To 0.25 g (1 mmol) of η^5 -C₅H₅(CO)₂Fe- η^1 -Ph in dry THF was added at -78° C 3.5 ml (3-4 mmol) of 0.8-0.9 N n-BuLi solution in hexane. The reaction mixture was stirred for 15-20 min, poured onto solid CO₂ and the reaction continued for another 1-1.5 h while the temperature was gradually raised to room temperature. The solvent was removed in vacuo, the residue was dissolved in a small quantity of water, and the solution was filtered, followed by dropwise addition of concentrated HCl. The light-yellow precipitate was separated, precipitated again several times from the alkali solution with an acid and recrystallized from toluene. The product was η^5 -C₅H₄COOH(CO)₂-Fe- η^1 -Ph (0.18 g, 0.6 mmol); the characteristics of acid IV are given in Table 1.

Acids V and VI were prepared in the same way as IV.

IR spectra were taken with a Zeiss-UR 20 spectrometer and NMR spectra with a Bruker WP-200-SY instrument.

The pH-values of the solutions were measured by means of a pH-673 pH-meter. A 1×10^{-4} mol sample of the acid was dissolved in 50 ml of 50 vol.% aqueous ethanol and titrated with an alcohol solution of NaOH in nitrogen atmosphere. The pK_a values were calculated by the conventional formula. [8]. Table 2 reports the results averaged over three measurements. The r.m.s. error was \pm 0.1.

References

- 1 T.Yu. Orlova, V.N. Setkina, L.G. Makarova, I.V. Polovyanyuk and D.N. Kursanov, Dokl. Akad. Nauk SSSR, 3 (1971) 622.
- 2 E.V. Bykova, D.N. Kursanov and V.N. Setkina, Dokl. Akad. Nauk SSSR, 5 (1973) 1091.
- 3 T.Yu. Orlova, V.N. Setkina, V.F. Sizoy and D.N. Kursanov, J. Organomet. Chem., 252 (1983) 201.
- 4 S.P. Gubin, K.I. Grandberg, E.G. Perevalova and A.N. Nesmeyanov, Dokl. Akad. Nauk SSSR, 159 (1964) 1075.
- 5 A.N. Nesmeyanov, Yu.A. Chapovsky, I.V. Polovyanyuk and L.G. Makarova, J. Organomet. Chem., 7 (1967) 329.
- 6 A.N. Nesmeyanov, E.G. Perevalova, L.I. Leontieva and S.A. Eremin, O.V. Grigorieva, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 2645.
- 7 I.P. Bibler and A. Wojcicki, J. Am. Chem. Soc., 88 (1966) 4862.
- 8 A. Albert and E. Sejeant, Ionization Constants of Acids and Bases, A Laboratory Manual, Wiley, London, Methuen, New York, 1962.

TABLE 3